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Abstract— The success of a landed space exploration migsio
depends largely on the final landing site. Factorinfluencing site
selection include safety, fuel-consumption, and smitific return.
This paper addresses the problem of selecting thee$t available
landing site based on these factors in real-time ding
autonomous spacecraft descent onto a planetary sade. The
problem is modeled probabilistically using BayesianNetworks
(BNs). BNs provide a means of representing the caals
relationships between variables that impact the quay of a
landing site. The final landing site is determinedsia probabilistic
reasoning based on terrain safety derived from on<mrd sensors,
available fuel based on spacecraft descent dynamiand regions
of interest defined by mission scientists.

Index Terms — Autonomous spacecraft, safe landirigrrain
characterization, Bayesian Networks.

|. INTRODUCTION

some cases, known landing hazards, such as cfdtbtsare
used as landmarks for both position estimation aate
landing. In other cases, terrain features, suctslage and
roughness, are used to determine landing safety Hfipr
research has generally focused on the use of & skegsor,
such as a camera [7] or LIDAR [8]. The work presdnhere
focuses first, on the use of multiple heterogenemuhoard
sensors and second, on the use of reasoning teesniq infer
safety and incorporate engineering and sciencerfadh the
selection of a final landing site.

The use of a reasoning engine for
characterization using multiple sensors was firsppsed in
[6]. Terrain features extracted from a RADAR, LIDARBNd
camera were mapped to a multi-level safety scalggusizzy
logic. In this paper, the problem is modelled ptulistically
using Bayesian Networks (BNs). BNs not only provide
framework for terrain safety assessment, but atso tfie

Landing sites for space exploration missions haveelection of an optimal landing site based on &l critical

historically been determined off-line by scientisend
engineers based on aerial imagery obtained fronteosb The
selection process involves a variety of criteriduding safety,
engineering, and science factors [1]. For instaitdhe case
of the Mars Exploration Rovers (MER) mission, as many as
185 possible landing sites were first identifiedobe being
narrowed down to 6 high priority science sites. Augdhe
concerns that factored into the selection processew
horizontal winds and wind shear, slopes, and ramksthe
surface [2]. In the end, two landing sites wereecield—one
for each rover.

Although, scientific return is a fundamental paftamy
space exploration mission, ultimately, the domimgattoncern
is safety. Consequently, landing sites with higherstific
potential are often eliminated from consideratidnsafety
cannot be guaranteed. For this reason, a majont eiffo
underway to equip the next generation of unmanpadexraft
with onboard hazard detection and avoidance cdpediin
order to reach locations of higher scientific ietr while
meeting the necessary safety criteria.

Considerable work has been done in the area cfosen
based autonomous landing. Landmark detection padfcular
importance for spacecraft navigation [3] and lagdjd]. In

factors, which has not been formally addressedrbefo

BNs have many attractive characteristics that ntaken
particularly well suited to this problem. BecausisBmodel
the relationships between causes and effects,cdeype used
for both inference and causal reasoning. In a BN safety of
the terrain can be inferred from features extraéteah the on-
board sensors. In addition, by incorporating ofhetors, such
as fuel consumption and scientific return, a BN &éso be
used to determine the best landing site using taeaaoning.
In this paper, a Bayesian framework for landing siélection
is presented and discussed. In addition, experBneme
conducted using synthetic planetary terrains ineordo
simulate the landing site selection during spadedescent.

Il. TERRAIN SAFETY

A. Onboard Sensors

A combination of active and passive sensors igl dse
terrain characterization during descent: RADAR, AR} and
camera, as in [6,9]. The motivation for using npitisensors
is twofold: 1) to increase robustness and 2) tachnthe
feature set.

Each sensor has different physical characterjssigsh as
field of view, resolution, and operating range. Tingitations
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of a particular sensor may be compensated by thagths of 1, for(x,y)OR
another. In addition, since the sensors have iffeoperating f(xy)= 0 otherwise (4)
ranges, the fusion of sensory information is graujp¢o three ’
tiers, as shown in Table I. whereR is the set of pixel locations in the image idéetifas
TABLE | rocks. Crater and rock detection results are stiowigure 1.
TIERED SENSOROPERATION
Tier Range Operational Sensor(s) @ (®)

1 10km — 7km Radar . ‘

2 7km — 1km Radar + Camera

3 1km - Touchdown Radar + Camera + Lidar - - “ 3 &
B. Terrain Features NN

A combination of large scale and small scale toaplic < - >

features are used to predict terrain safety. Thallsstale

features are obtained from RADAR and LIDAR range¢ada
Slope and roughness features can be extractedtiremange

data using plane fitting.

Let z = ax + by + c represent a plane ini®. The plane
parameters, b, andc are estimated from the range data using
the Least Median of Squares (LMedSq) regressiohnigae
[8]. The slope is obtained by calculating the arfglened by
the estimated plane normal and #exis: Fig. 1 Craters (a) and rocks (b) detected from carmeagery.

C. Bayesian Safety Assessment
fo(X, y) = COS_{—j (1) Predicting terrain safety from a set of noisy sens
vaZ+b?+1 measurements is not a deterministic problem. Fer#éason, a

robabilistic framework is proposed here. Spedifica

wherfaa andb are th.e.parameters of the best-fitting plane agayesian Networks (BNs) [11] are used to modelistiaal
location &y). The fitting error between the plane and thedependencies and infer terrain safety from features

sensor range provides a measure of the local terrain roughness: BNs are directed acyclic graphs (DAG) where thdeso

fo(X, y) =|d(x, y) - (ax+by+c)| (2) represent variables and the links between nodesesept

causal dependence. The direction of a link indicatausality,

A novel aspect of this work is that in addition to localand thus a dependence relationship. Nodes that aixithe
terrain features, known landing hazards such as craters aggime level are considered conditionally independent

rocks are explicitly detected and used in the reasoning process. The state of the terraifi can be inferred from the terrain
These are obtained from camera imagery using detectiGBatured using Bayes' rule:

algorithms. The crater detection algorithm uses edges and

shadow patterns to identify candidate craters [4]. The P(TIF) = P(.f) _ P(EIT)P)
candidate craters are parameterized by fitting an ellipse to the P(f) P(f)
crater boundary. Let;, Yoi, &, bi, andg be the ellipse center ) )
x-coordinate, centery-coordinate, semi-major axis length, I the N features are fully dependent, then fdwlimensional
semi-minor axis length, and rotation angle, respectively, foflistribution is needed to evaluate Eq. (5). If fhatures are

theith detected crater. The presence of craters is defined as: 285Sumed to be conditionally independent, heimensional
distribution is reduced tbl 1-dimensional distributions (naive

X2 y? Bayes). Although independence is often difficultagsess, it
f(xy)= 1 for <1
[ 1

®)

¥+¥ = (3) has been shown that for most classification problethe
0 otherwise assumption is adequate and does not lead to ircteasor
' [12]. Applying conditional independence reduces (5 to:

wherex andy are points in a coordinate system rotatedgby N

and translated bxy; andyy;. P(f, [T )P(T,)

At lower altitudes, rocks and boulders are visible and are |
detected using the algorithm described in [10]. Rocks are P(T If) = T N ©)
detected in descent imagery by locating and characterizing Z P(fi |T})

shadows. The shape of the rock is determined using a
hemispherical model and the projection of shadows based on

the known sun angle. The presence of rocks is defined as;  The posterior probability P(T|f)U[0,1] provides a
continuous-valued measure of certainty that theaireiis safe.

Eq. (6) can be represented graphically, as showgiire 2.
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Fig. 3 Terrain safety assessment during descentaptanetary surface at 8km (a), 4km (b), and {&m

oNo

Fig. 2 Naive Bayes graphical structure for terssifety assessment.

Example results using Bayesian terrain safetysassent
are shown in Figure 3. The terrain safety is shawithree
altitudes during descent (onto the same terrainj. display
purposes, the continuous probabilT |f) is mapped to four
levels of safetyhighly-unsafe (HU), moderately-unsafe (MU),
moderately-safe (MS), andhighly-safe (HS), which are shown
as green, yellow, orange, and red, respectivelre (fame
color scheme is used throughout the paper.)

IV. ENGINEERINGFACTORS

Although terrain safety is of paramount importarnne
landing site selection, other factors must alsactesidered.
During autonomous spacecraft descent, retargefegations
are performed in order to avoid landing hazardsraagh the
nominal landing site. However, the reachable terr&
constrained by the spacecraft’'s descent trajectaipcity and
available fuel. Using ballistic analysis, it wasosim in [13]
that the reachable terrain (landing footprint) éaibded by an
ellipse

(@)

whose semi-major axesand semi-minor axib are defined by

a_(AV2—2E/m)At

(8)
20V (1-v,, [ AV)
b=a\1-v, /AV 9)

without saying that the landing site must be withire
reachable boundary.

Figure 4 shows estimated landing footprints atioesr
points during descent. As shown, the ballisticetttgry begins
with an initial horizontal velocity. The landinglipse then
changes dramatically after a re-targeting maneisvapplied.
The position of the spacecraft during descent asvshas a red
circle and the corresponding landing ellipse isnghn blue.

500"

400"
300
200

100

400

Fig. 4 Estimated landing ellipse using ballisti@absis.

In the Bayesian framework, the landing ellipsaised to
exclude regions of the terrain that are unreachdleer be a
random variable indicating fuel sufficiency. In thimary case,
the fuel is either sufficient or insufficient toagh a particular
point on the terrain. However, such a represematiay not
be adequate since the estimate of the landing fiootfand
thus fuel sufficiency) is subject to error. Onecaittive is to
shrink the landing ellipse based on the margin obre
Another alternative is to use a multi-level repréagon. For

example,F can be modeled as a ternary discrete random

variable where in addition toeachable and unreachable, a
third case is introducedmarginally reachable. These are
points that lie inside the landing ellipse but atese to the
boundary and thus, within the margin of error. Suah
approach is adopted here. An example landing ellis
overlaid on a terrain in Figure 5a. Reachable, mally

where AV is the allowable change in velocity based on fuekeachable, and unreachable points are shown imgye#ow,

allocation, At is the time to impactyy is the horizontal

and red, respectively. A 20% margin of error isduse define

velocity, m is spacecraft mass, afdis energy, [13]. It goes the marginally reachable sites in Figure 5a (ad waelthe

example results shown later).



V. SCIENCEFACTORS

Landing site selection for a space exploration imisss
generally a compromise between safety and sciemntfiurn.
When safety cannot be guaranteed, a potentialnsitst be
discarded—regardless of its potential scientific pamt.
Determining areas of high scientific potential idahorious
process that involves numerous considerations lukythe
scope of an on-board reasoning system. It is, hewev
possible to integrate the scientists’ preferredssih order to
influence the on-board site selection. Thus, fatdnce, the
scientists may pre-select multiple potential sitiegt can be
used
assessment in order to select the best site dddagent. Such
a scenario is considered here.

Assume scientists select a set of points of int€rgsyo;)
in the terrain. Each point is at the center ofrautar region of
interest with radius;:

(x=%o,) 2 +(y=Yo;)? <12 (10)
The regions of scientific interest may or may netranked. If
the sites are ranked, the ranking may be relativethier sites
or based on a scale of interest. The general framew
proposed here can account for any of these scendnichis
paper, the ranking is based on level of interestirig the site
selection process, scientists assign a score to site based
on the potential for scientific return. It is pddsi for multiple
sites to have the same score.

At the point of entry, all pre-selected locationse a
reachable. As the terrain safety is assessed,itthéhat best
combines safety, engineering, and scientific detes used for
re-targeting. The process is done repeatedly dudiegcent
until arriving at a final selected landing sitegtiie 5b shows
an example terrain with three regions of intereagh with a
particular science ranking. In this case, threéediht science
levels (or rankings) are usekigh (shown in green)medium
(shown in yellow), andow (shown in orange). A fourth level
represents zero scientific interest (shown in red).

(b)

Fig. 5 Reachable (a) and scientifically interes{ingregions of the terrain.
VI. LANDING SITE SELECTION

As discussed earlier, during spacecraft desdeatierrain
safety is determined based on features extracted the on-
board sensors. Based on safety alone, a landiagaitld be
selected by choosing the region of the terrain witle
maximum a posteriori probabilit?(T |f). However, if the
spacecraft cannot reach the selected site origfaf minimal

in conjunction with the on-board terrain gsafet

scientific interest, the selection is meaninglessThus,

engineering and science factors must be combingdtesirain

safety in order to select the landing site. Lebe a discrete
random variable representing landing quality. Theding

quality L depends on the state of the terr@jnthe available
fuel F, the and level of scientific intereSt Based on these
causal relationships, a BN for landing site setecttan be
constructed, as in Figure 6.

oRo

Fig. 6 BN for landing site selection.

Noting that nodes at the same level in a BN aralitiomally
independent, the joint probability encoded by tiviB Figure
6 can be written as:

P(T,F,S,L, fy,..fy) =

= (11)
P(T)P(F)P(S)P(L|T,F,S)|_1| P(f, |T)

As can be seen, the bottom portion of the BN sfinecin
Figure 6 is the same as the naive Bayes structuréefrain
safety.

For landing site selection, the quantity of ingtrés
P(L|T,F,S). This probability can be determined using
causal (ortop-down) reasoning. Let) represent the state bf
at a point on the terrain. The quantiB(L=q|T,F,S)
represents the probability that the landing site dnaality level
g, given terrain safety, fuel sufficiency, and stifeninterest.
The expected quality of a potential site is

E(LIT,F,$)=> dP(L=q|T,F,9) (12)

q

whereE([) is the expectation operator. The best landirgyisit
the point on the terrain with the highest expeciaading
quality:

I" =maxXE(L|T,F,S)} (13)

The landing qualityt is based on the possible statesTpf,
and S Thus,q can only take on a finite number of values.
Settingg[0,1] ensures thdt[[0,1].



VII. EXPERIMENTS

A. Smulation

In order to evaluate the proposed approach, &sefi
experiments were performed using DSENDS, a highlifid
dynamics and spacecraft simulator for entry, deseer
landing [14]. Also, a suite of Digital Elevation s (DEMS)
representing a variety of planetary terrains wasated. The
terrains are generated using a fractal model. Hitlsters, and
rocks are added using appropriate models to ensatesm.

V. CONCLUSIONS ANDFUTURE WORK

This paper described a probabilistic approachataling
site selection during autonomous spacecraft destemtas
shown that BNs can adequately model a variety éré,
including terrain safety, fuel consumption, and estfic
interest, which can be used to determine the lasling site.
Although the framework was proposed for autonomous
landing, it could also be applied to navigatiorari®l for future
work include incorporating principles of probalilis

Features are extracted from these DEMs using (RADARreasoning over time as well as dynamic sensortragie in
LIDAR and camera) sensor models while simulatingorder to allow for continuous reasoning with mué#ipre-

spacecraft descent in DSENDS.

B. Supervised Learning

A supervised approach is used to learn the digtdabs in
the Bayesian framework. Safety ground truth is ioleth by
estimating the final pose of the spacecraft atyepeint on the
terrain DEM. In addition, rocks and craters areomdtically
deemed unsafe. A set of 10 different DEMs were -ussach
representing a different planetary landscape. Trrgifor the
terrain safety assessment and landing site seatectio

performed using theleave-one-out approach where nine

DEMS are used for training and the remaining DEMsed as
a test case. Each cell in the DEM is treated as@apendent
observation. It should also be noted that thredemiht
classifiers are trained, one for each descenfdes Table I).

The features,f, are a combination of discrete and

continuous random variables. Specifically, the ematand
rocks are discrete and the slope and roughnesatmuous.
A conditional Gaussian model is used and the fioald
P(f; | T) is obtained using maximum likelihood estimation.

C. Results

Landing site selection results are shown in Figur&he
safety assessment is overlaid on each terrain.fidiecllipse
is dashed and the sites of scientific interestsatiel. Each site
of scientific interest is centered about the omgimpoint
selected by a scientist and shows a broad areaawgircular
radius of 100m. The science ranking is indicated &y
correspondingd (high), M (medium), orL (low). The sites of
scientific interest were not selected by actuatrstists—they
are only meant for evaluation purposes. The firdéded
landing site is shown with a black hash mark. Iditah, the

final landing scorel” is shown for each selected site. All

examples are at an altitude of 4Km.

The results indicate that the proposed approdeltsehe
site that best optimizes all three key factorsraiar safety,
fuel, and science. For instance, in Figure 7d,ethame two
regions of high scientific interest. However, orfigh® regions
lies near the boundary of the fuel ellipse anddtrer lies in
an unsafe part of the terrain. Consequently, ansttemedium
scientific interest is selected because it hastibkalance of
all three key factors. In Figure 7b, the selectedoes lie in a
region of high scientific interest. Although thissegion
straddles a crater, there are enough safe pomts Which to
select a final landing site. A similar interplaytlveen the three
key factors is seen in the other examples.

targeting operations. In addition, the proposedhoeiwill be
compared with other approaches in order to astesslative
performance. Considerable validation work will ald®
performed, including Monte Carlo simulations and
experiments using real data collected from fielgdeziments.
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Fig. 7 Final landing sites selected for six differplanetary terrains. The dashed ellipses reptéserreachable area (based on fuel allocation}ladolid
ellipses represent regions of scientific inter&ke level of scientific interest is indicated bytrthigh), M (medium) orL (low). The selected sites are shown
with a hash mark. In addition, the landing sdorfer each of the selected sites is also shown.



